Accelerated Sampling Kaczmarz Motzkin Algorithm for Linear Feasibility Problem

Abstract

The Sampling Kaczmarz Motzkin (SKM) algorithm is a generalized method for solving large-scale linear systems of inequalities. Having its root in the relaxation method of Agmon, Schoenberg, and Motzkin and the randomized Kaczmarz method, SKM outperforms the state-of-the-art methods in solving large-scale Linear Feasibility (LF) problems. Motivated by SKM’s success, in this work, we propose an Accelerated Sampling Kaczmarz Motzkin (ASKM) algorithm which achieves better convergence compared to the standard SKM algorithm on ill-conditioned problems. We provide a thorough convergence analysis for the proposed accelerated algorithm and validate the results with various numerical experiments. We compare the performance and effectiveness of ASKM algorithm with SKM, Interior Point Method (IPM) and Active Set Method (ASM) on randomly generated instances as well as Netlib LPs. In most of the test instances, the proposed ASKM algorithm outperforms the other state-of-the-art methods.

Publication
In Journal of Global Optimization, 77 (2)
Md Sarowar Morshed
Md Sarowar Morshed
Operations Research Engineer

My research interests include mathematical optimization, operations research and machine learning.