The recently proposed Sampling Kaczmarz Motzkin (SKM) algorithm performs well in comparison with the state-of-the-art methods in solving large-scale Linear Feasibility (LF) problems. To explore the concept of momentum in the context of solving LF problems, in this work, we propose a momentum induced algorithm called Momentum Sampling Kaczmarz Motzkin (MSKM). The MSKM algorithm is developed by integrating the heavy ball momentum to the SKM algorithm. We provide a rigorous convergence analysis of the proposed MSKM algorithm from which we obtain convergence results of several Kaczmarz type methods for solving LF problems. Moreover, under somewhat weaker conditions, we establish a sub-linear convergence rate for the so-called Cesaro average of the sequence generated by the MSKM algorithm. We then back up the theoretical results via thorough numerical experiments on artificial and real datasets. For a fair comparison, we test our proposed method in comparison with the SKM method on a wide variety of test instances