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Abstract. The goal of this work is present both an analytic and
computational review of Tridiagonal matrices. Of the many an-
alytic benefits, we find particular interest in the closed-form so-
lutions for many indispensable matrix properties. Also, through
their inherent sparsity, Tridiagonal systems provide a computa-
tional quintessence which directly lends itself to tailor-made algo-
rithms for solving.

1. Introduction

In mathematics, a tridiagonal matrix is a matrix that has nonzero
elements only on the subdiagonal, superdiagonal and the diagonal itself.
Although conventionally referred to as tridiagonal, the names band
matrix with bandwidth 3 and upper and lower Hessenberg matrix may
also be encountered in literature. Tridiagonal systems are of the form

(1) T = [tij] =


a1 b1 0
c1 a2 b2

c2
. . . . . .
. . . . . . bn−1

0 cn−1 an



Defining the tij element using piecewise notation we write

tij =


ai, if i = j;

bi, if j − i = 1;

ci−1, if i− j = 1;

0, otherwise.
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Often, as a form of shorthand notation, the tridiagonal system may be
notated as

T = Trid[cn−1, an, bn−1],

where

cn−1 := (c1, c2, ..., cn−1) is the vector along the subdiagonal,

an := (a1, a2, ..., an) is the vector along the diagonal,

bn−1 := (b1, b2, ..., bn−1) is the vector along the subdiagonal.

In this general case, we assume that we do not have equality of all
elements in each diagonal vector. ci 6= cj, ai 6= aj, bi 6= bj, for some
1 ≤ i, j ≤ n.

In the event that ci = cj, ai = aj, bi = bj, for all 1 ≤ i, j ≤ n, we write

T = Trid[c, a, b].

This special subclass of tridiagonal systems is often referred to as
Toeplitz tridiagonal matrices and provide the benefit of allowing
for closed-form solutions of some its characterizing properties.

As a subclass of the aforementioned, we have symmetric Toeplitz
tridiagonal matrices, which are characterized by the equivalence of
all elements in both the super- and subdiagonals. That is to say that
ci = cj, ai = aj, bi = bj, ci = bj, for all 1 ≤ i, j ≤ n. We notate them
as follows:

T = Trid[b, a, b].

Lastly, before proceeding to the more technical details of tridiagonal
matrices, we mention the subclass of tridiagonal systems (non-Toeplitz,
symmetric) characterized by ai = 0 for 1 ≤ i ≤ n and bi = ci for all
1 ≤ i ≤ n−1. For the purposes of this paper we will call these systems
symmetric zero-tridiagonal matrices and they shall be notated as

T = Trid[bn−1, a, bn−1].

Now, let us turn our attention to some of the analytic and computa-
tional properties of tridiagonal systems.
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2. Characterizations & Properties

As previously discussed, there are multiple benefits to working with
tridiagonal systems over general n × n matrices. Analytically these
benefits often come in the form of closed-form solutions for many of the
ubiquitous matrix properties. Not only do these benefit our analysis
of the subjects of matrix theory and linear algebra, they extend to the
numerical realm as well. An attractively low operational cost is enjoyed
when using general tridiagonal systems for iterative methods and even
more so when the systems are symmetric [1]. Of course, the cost-benefit
analysis must be performed to determine if these reductions will be
computationally beneficial. Being that the scope of this work is limited,
we will ultimately focus our attention in this section to those properties
pertaining to the determinant, the eigenvalues and the inverse of each
of the classes of matrices we introduced in the introduction.

Determinant

For a general, non-tridiagonal matrix, the computational cost to com-
pute the determinant is O(n3). However, when working with a general
tridiagonal matrix, our cost is reduced to O(n) [2]. In the general
case, the determinant can be calculated using the recursive open-form
equation defined as a function of the preceding principal minors. The
equation is given as

(2) δn = anδn−1 − cn−1bn−1δn−2,

where δ−1 = 0 and δ0 = 1.

However, this open-form solution is not idea. Ideally, we would like to
have a closed-form solution. Thus, now that this recursive relationship
has been observed, let us also observe that (2) takes the form of a ho-
mogeneous second order difference equation. That is to say that (2) is
of the form

(3) yn+2 = −Anyn+1 −Bnyn, n ≥ 1

where the initial conditions y−1 = 0 and y0 = 1 are given and An
and Bn are complex variable coefficients with Bn 6= 0 [4]. Associ-
ating this definition with (2), we can see that for our case, each An
and Bn will be defined in terms of the original entries of our matrix
T = Trid[cn−1, an, bn−1]. More specifically, Ai = −ai for all i = 1, ..., n
and Bi = ci−1bi−1 for all i = 1, ..., n−1. Then as author Ranjan Mallik
states on page 37 of his work, we define
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(4) σk :=
Bk

Ak−1Ak
, k ≥ 2 and σ1(n) :=

B1

AnA1

.

Mallik then introduces a set Sq(L,U) q-tuples of natural numbers,
where q, L, U ∈ N, which can be examined in more detail in [4]. Thus,
we write

(5) Sq(L,U) =



{L,L+ 1, ..., U}, if U ≥ L and q = 1

{(k1, ..., kq) : k1, ..., kq ∈ {L,L+ 1, ..., U};
kl − kl−1 ≥ 2 for l = 2, ..., q}
if U ≥ L+ 2 and 2 ≤ q ≤ bU−L+2

2
c

0, otherwise.

Then, by Proposition 5 (p. 37, [4]), we write the closed-form solution of
the determinant of T with initial conditions δ1 = a1 and δ2 = a1a2−c1b1
as

δn = Cn−2δ2 +Dn−2δ1

= (a1a2 − c1b1)Cn−2 + a1Dn−2, n ≥ 2

where C0 = 1, C1 = −A1, D0 = 0, D1 = −B1, D2 = B1A2 and

Cn = (−1)n(A1 · · ·An)×

1 +

bn/2c∑
q=1

(−1)q
∑

(k0,...,kq−1)∈Sq(2,n)

(σk0 · · ·σkq−1)


(6)

Dn = (−1)n+1B1(A2 · · ·An)×

1 +

b(n+1)/2c∑
q=1

(−1)q
∑

(k1,...,kq−1)∈Sq−1(3,n)

(σk1 · · ·σkq−1)


(7)

for n ≥ 2 and n ≥ 3 respectively and where σk is defined by (4) Sq(L,U)
is defined by (5) .
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As may be discerned from (7) and (8), the calculation of the deter-
minant of a general tridiagonal matrix can become very notationally
convoluted, amongst other challenges. Therefore, it is often much more
convenient, when presented with one of the subclasses mentioned in the
introduction, to exploit the specifications of the system to develop sim-
pler methods of calculation.

When presented with a Toeplitz tridiagonal matrix T = Trid[c, a, b],
the determinant can be computed by

(8) δn = aδn−1 − cbδn−2,

where, as before, δ−1 = 0 and δ0 = 1. However, we also have a closed-
form solution that is considerably more straightforward and is given
by

δn =

{ 1
t1−t2 [tn+1

1 − tn+1
2 ], if a2 6= 4cb

(n+ 1)
(
a
2

)2
, if a2 = 4cb

,

where t1 =
a+
√
a2 − 4cb

2
and t2 =

a−
√
a2 − 4cb

2
.

Similarly, we may define closed-form solutions for the other subclasses
of matrices previously mentioned. However, we will suffice it to have
shown the general case and subclass example.
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Eigenvalues

Let the eigenvalues of a general tridiagonal matrix T be represented by
λ. Then, the characteristic polynomial of T may be represented by

δn = det
{

Trid[cn−1, an − λ, bn−1]
}

= 0.

As with the determinant, we may relate the characteristic polynomial
to the recursive formula given in (2), namely

(9) δn = (an − λ)δn−1 − bn−1cn−1δn−2 = 0.

In order to determine the value of λ, we must solve (4) because there
is no closed-form solution for the eigenvalues of a general tridiagonal
matrix.

When T = Trid[c, a, b] is a Toeplitz tridiagonal matrix, the kth eigen-
value of T may computed by ([3])

(10) λk = a+ 2
√
bc cos

[
kπ

n+ 1

]
, for k = 1, ..., n.

Moreover, as is made apparent in (5), for all k = 1, ..., n, the eigenval-
ues of T will be bound by

a− 2
√
bc ≤ λk ≤ a+ 2

√
bc.

As an immediate consequence of (5), we obtain the closed form for the
eigenvalues of a symmetric Toeplitz tridiagonal matrix. Namely,

(11) λk = a+ 2b cos

[
kπ

n+ 1

]
, for k = 1, ..., n.

as well as

(12) a− 2b ≤ λk ≤ a+ 2b.

Finally, in the case where T = Trid[bn−1, a, bn−1] is a symmetric zero-
tridiagonal matrix, the characteristic polynomials are of the form of
Hermite polynomials. Schur showed that Hermite polynomials of even
degree are irreducible and that their Galois groups are not solvable.
In other words, in this circumstance, not only is the possibility of a
closed-form solution unsolved but has been proven to be impossible!
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3. Applications

Outside of the fields in which they first found life, namely matrix theory
and linear algebra, tridiagonal matrices have been found to naturally
manifest in a multitude of real-world scenarios. These systems can be
found in applications such as the fast diffusion question in the field
of digital imaging [6], the comparison of a wavelet-Galerkin procedure
with a Crank-Nicolson-Galerkin procedure for the diffusion equation
[7], and quantitative remote sensing inversion in earth science [8].

Another place where tridiagonal systems may arise is in the solution of
the vertical force produced by vibrating strings with coupled oscillators
with fixed end-points. Specifically, consider the given system shown in
Figure 1.:

Figure 1. Coupled Oscillators with Fixed End-Points

In the given system, we have n = 2 equally-spaced balls, each with
mass m. Then, we let yk represent the vertical displacement of the kth

mass and τ be the tension in the string. Also, let φk be the angle of
elevation from the kth mass to the k + 1st mass, with respect to the
horizontal plane. Then, the force produced on the vertical plane may
be measured by

(13) my′′k = τ sinφk − τ sinφk−1, k = 1, ..., n

This is a system of second order linear constant coefficient differential
equations with the boundary conditions y0(t) = 0 and yn+1(t) = 0.
Thus, the solution to this problem shares many similarities with those
found in our quest to compute the determinant of a general n × n
tridiagonal matrix. However, (13) is nonlinear but we may make some
numerical assumptions, namely that φk ≈ 0, in order to reduce our
system that would represent a tridiagonal system. The reduction would
be

α2vk = p2(vk+1 − 2vk + vk−1), k = 1, ..., n.
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Thus, we have

(14)
−(2p2 + α2) p2 0

p2 −(2p2 + α2) p2

p2
. . . . . .
. . . . . . p2

0 p2 −(2p2 + α2)




v1

v2
...

vn−1

vn

 =


0

0
...
0

0

 .

4. Solutions: Gauss Elimination vs. Gauss-Seidel

In the following section, we will compare and contrast the computa-
tional properties of the Gauss Elimination and Gauss-Seidel methods
for solving systems of equations. Our focus will be restricted to sym-
metric, tridiagonal matrices of the form:

Ax =



d1 a1 0 0 0 . . . 0
a1 d2 a2 0 0 . . . 0
0 a2 d3 a3 0 . . . 0
0 0 a3 d4 a4 . . . 0
. . . . . . . . .
0 0 0 . . an−3 dn−2 an−2 0
0 0 0 . . 0 an−2 dn−1 an−1
0 0 0 . . 0 0 an−1 dn





x1
x2
x3
.
.
.

xn−1
xn


=



b1
b2
b3
.
.
.

bn−1
bn


= b

Gauss Elimination

Let us denote the ith row of A by Ri and the new ith row, after perform-
ing the Gauss Elimination method, by R′i. Also, we will represent the
new ith diagonal entry of A by d′i and new ith entry of b by b′i. Then,
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let us perform the following operations in accordance with Gauss elim-
ination:

R2 ← R1

(
−a1
d1

)
+R2

R3 ← R′2
(
−a2
d′2

)
+R3

...

Rn ← R′n−1
(
−an−1
d′n−1

)
+Rn

After performing these successive operations, we obtain an updated
system which, as is often the goal of Gauss elimination, has zeroes
below the leading terms in each row. That is to say that

(15)



d′1 a1 0 0 0 . . . 0
0 d′2 a2 0 0 . . . 0
0 0 d′3 a3 0 . . . 0
0 0 0 d′4 a4 . . . 0
. . . . . . . . .
0 0 0 . . 0 d′n−2 an−2 0
0 0 0 . . 0 0 d′n−1 an−1
0 0 0 . . 0 0 0 d′n





x1
x2
x3
.
.
.

xn−1
xn


=



b′1
b′2
b′3
.
.
.

b′n−1
b′n


where,

d′1 = d1, b′1 = b1

d′2 = d2 −
a21
d1
, b′2 = b2 − b1

(a1
d1

)
d′3 = d3 −

a22
d′2
, b′3 = b3 − b′2

(a2
d′2

)
...

d′n = dn −
a2n−1
d′n−1

, b′n = bn − b′n−1
(an−1
d′n−1

)
.

Now, let us turn our attention to the operational cost of performing
the Gauss elimination method. First, since the lower diagonal is zero
and the upper diagonal stays same, we do not need to compute them.
Hence, we just need to calculate di which, for each i will cost

1(multiplication)+1(division)+1(subtraction)=3.
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In total, we will need to perform 3(n− 1) operations on the given ma-
trix. Similaryl, we will operate on the solution vector b, which will
come at a cost of 3(n− 1) operations. All together, our computational
cost will be 6(n − 1) for each b. Moreover, in the event that we are
presented with M different solution vectors b (as could be expected in
industry), the total number of operations will be 3(M + 1)(n− 1).

Then, employing the method of backward sustitution, our system can
be solved by the following computational algorithms:

xn = b′n/d
′
n (1 operation)

xn−1 =
b′n−1 − an−1xn

d′n−1
(3 operations)

...

xi =
b′i − aixi+1

d′i
(3 operations)

...

x1 =
b′1 − a1x2

d′1
(3 operations)

Thus, the number of operations required for backward substitution is
3(n−1) + 1. Finally, we conclude that in order to solve the tridiagonal
system of the equations using the Gauss elimination method, a total
of (3M + 6)(n− 1) + 1 operations must be performed.

Gauss-Seidel Method

The iterative formula given by Qx(k) = (Q−A)x(k−1) + b, will produce
a sequence converging to the solution of Ax = b, for any x(0), if and
only if ρ(I −Q−1A) < 1.

In order to perform the Gauss-Seidel Method, let us define Q to be the
lower triangular part of A, including the diagonal.

Then we have the following algorithms for computing the solution:

x
(k)
1 = 1

d1

[
b1 − a1x(k−1)2

]
(3 operations)

x
(k)
i = 1

di

[
bi − ai−1x(k)i−1 − aix

(k−1)
i+1

]
for i = 2, 3, ..., n− 1, (5 operations)
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x
(k)
n = 1

dn

[
bn − an−1x(k)n−1

]
(3 operations)

Then, the number of operations for one iteration of the Gauss-Seidel
method is 3 + 5(n− 2) + 3 = 5n− 4. In order to compute k iterations,
we will need to perform a total of k(5n− 4) operations.

Comparison

Let us begin by assuming that the given system is consistent.

1. If the matrix A is not a diagonally dominant matrix then we can not
apply Gauss Seidel method due to its lack of convergence. However,
we may employ the Gauss elimination method with pivoting to achieve
solutions to the system.

2. Now, from this point forward, let assume that the matrix A is a
diagonally dominant matrix. Then, we can apply Gauss Seidel method
to solve the system, where the solution will converge to the exact so-
lution for any given error bound.
Since, Gauss elimination preserves the diagonal dominance of A, then
each |d′i| ≥ |ai| > 0, for all ai 6= 0. If ai = d′i = 0 then b′i = 0 since
the system is consistent and we can ignore that row to minimize the
number of operations. Therefore, with all of these possible scenarios,
we do not apply the row interchanging process in the Gauss elimination
method.

3. Because the number of operations in Gauss elimination (3M+6)(n−
1)+1 depends on the amount, M , of solution vectors, if we have a high
amount of different b vectors then the number of operations will also
be high. However, for the Gauss Seidel method, we will just multiply
it by M to achieve Mk(5n− 4).

4. In the Gauss Seidel method, we can control the error by either in-
creasing or decreasing the number of iterations. Thus, we will not have
an issue with round-off error. But in the Gauss elimination method,
if our entries are very small or relatively close to each other, then it
is very possible that we will incur a large round-off error. TMoreover,
the larger our given system, the more this error will be magnified. This
comes as a result of having to compute more operations each time with
the succeeding round-off error, which in turn will produce an ever larger
error.
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Example 1:

A =

 6 6− ε 0
6− ε 6 ε− 1

0 ε− 1 6

(16)

If ε is small enough, then d′2 = 6− (6−ε)2
6

≈ 0 in Matlab, which will not
give the correct answer if we use Gauss elimination.

Example 2: Our goal here was to try and produce a large round-off
error that would in turn produce largely varying results. However, as
can be seen in the following, that is not the case for smaller systems
such at this 3× 3 matrix.

Ax =

 6 5.9 0
5.9 6 1
0 1 6

x1x2
x3

 =

10
11
7

 = b(17)

By using Gauss-Elimination method we get

(18) x =

x1x2
x3

 =

1.6667
0.0000
1.1667

 .
Solving the system with the Gauss Seidel method we will obtain an
equivalent result. Namely,

x =

x1x2
x3

 =

1.6667
0.0000
1.1667

 .(19)
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5. Conclusion

In our quest to review the many benefits and properties of tridiagonal
matrices, we have concluded that not only are these systems ideal in a
numerical methods setting, but are also revered in an analytic setting
due to their closed-form properties. We have seen that while these
systems may arise organically in various applications, it may also be
beneficial to transform general matrices into a tridiagonal form. More-
over, we have seen that the computations required for certain properties
may be O(n) while we could expect operation counts on the order of
O(n3) for general systems.

Of significant importance was our development of the relationship be-
tween the recursive formula for the determinant and difference equa-
tions, which ultimately led to a closed form solution.

Of particular interest to the members of our group were the tridiago-
nal applications related to differential equations and have provided an
vessel through which further research may be conducted.
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Appendix

Gauss Elimination Matlab Code

c l e a r ; c l c ; format shor t ;
a =[5.9999999999 0 . 9999999999 ] ;
d=[6 6 6 ] ;
B=[11.9999999999 13.9999999998 6 . 9999999999 ] ;
[M,N]= s i z e ( a ) ;
A=ze ro s (N+1);
f o r i =1:N
A( i , i +1)=a ( i ) ;
A( i +1, i )=a ( i ) ;
A( i , i )=d( i ) ;
end
A(N+1,N+1)=d(N+1);
A
B
f o r i =2:N+1

A( i , i −1)=0;
A( i , i )=A( i , i )−(a ( i −1))ˆ2/A( i −1, i −1);
B( i )=B( i )−(a ( i −1)∗B( i −1))/A( i −1, i −1);

end
A
B
x (N+1)=B(N+1)/A(N+1,N+1);
f o r i=N:−1:1

x ( i )=(B( i )−a ( i )∗x ( i +1))/A( i , i ) ;
end
x ’
A∗x ’
a =[5.9999999999 0 . 9999999999 ] ;
d=[6 6 6 ] ;
B=[11.9999999999 13.9999999998 6 . 9999999999 ] ;
[M,N]= s i z e ( a ) ;
A=ze ro s (N+1);
f o r i =1:N
A( i , i +1)=a ( i ) ;
A( i +1, i )=a ( i ) ;
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A( i , i )=d( i ) ;
end
A(N+1,N+1)=d(N+1);
A
B
A∗x ’

Gauss-Seidel Matlab Code

c l e a r ; c l c ; format shor t ;
a =[5.99999 0 . 9 9 9 9 9 ] ;
d=[6 7 6 ] ;
B=[11.99999 13.99998 6 . 9 9 9 9 9 ] ;
[M,N]= s i z e ( a ) ;
A=ze ro s (N+1);
f o r i =1:N
A( i , i +1)=a ( i ) ;
A( i +1, i )=a ( i ) ;
A( i , i )=d( i ) ;
end
A(N+1,N+1)=d(N+1);
A
B
x(: ,1)=[−1 4 1 0 ] ’ ;
f o r k=2:500

x (1 , k)=(B(1)−a (1)∗ x (2 , k−1))/d ( 1 ) ;
f o r i =2:N

x ( i , k)=(B( i )−a ( i −1)∗x ( i −1,k)−a ( i )∗x ( i +1,k−1))/d( i ) ;
end
x (N+1,k)=(B(N+1)−a (N)∗x (N, k ) )/ d(N+1);

end
x ( : , 5 0 0 )
A∗x ( : , 5 0 0 )


