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1. Introduction

The Total Least Squares (TLS) problem is a well known technique for solving the fol-
lowing over-determined linear systems of equations

Ax ≈ b A ∈ Rm×n, b ∈ R, m > n

in which both the matrix A and the right hand side b are affected by errors. We consider
the following classical definition of TLS problem, see [1]

Definition 1.1: (TLS problem).
The Total Least Squares problem with data A ∈ Rm×n and b ∈ Rm,m > n is given by

min ‖E | f‖F subject to b+ f ∈ Im(A+ E) (1)

where E ∈ Rm×n and f ∈ Rm. Here, ‖E | f‖F denotes the Frobenius matrix norm and
(E | f) denotes the m × (n + 1) matrix whose first n columns are the columns of E, and
the last column is the vector f . In various engineering and statistics applications where
a mathematical model reduces to the solution of an over-determined, possibly inconsistent
linear equation Ax ≈ b, solving that equation in the TLS sense yields a more convenient
approach than the ordinary least squares approach, in which the data matrix is assumed
constant and errors are considered right-hand side b

The TLS problem was firstly introduced by Golub and Van Loan in [1],[2] motivated by
the idea of statistical literature on orthogonal regression, errors-in-variables, and ’measure-
ment error’ methods and models. Their numerical algorithm for solving the TLS problem
was based on the singular value decomposition of the matrix (A | b). That algorithm, which
requires about 2mn2 + 12n3 arithmetic operations [4] and can also solve problems with mul-
tiple right hand sides, is still today one of the reference methods for the solution of general
TLS problems. Van Huffel and Vandewalle [3], [4] extended the algorithm of Golub and
Van Loan in order to deal with TLS problems having non-unique solutions, the so called
non-generic problems.

Since then, many variants and solution methods have been introduced on the basic TLS
problem because of its occurrence in many different fields [5].In [6] authors developed a
Gauss-Newton algorithm for solving the TLS problem.



2. Main Result

Let us make some assumptions before deriving the update formula of Total Least Square
problem using Randomized Kaczmarz algorithm.

Let σj(A) denote singular value j of A, organized in decreasing order so that

σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}

In their analysis [7],[8] Strohmer and Vershynin use the extra assumption that σn(A) > 0.
This implies that m ≥ n, that A has n independent columns, and that there can be at most
one solution x.

Update formula Using Randomized Kaczmarz

We will use another characterization of the the solution of the total least squares problem
with data A and b for our formulation. The other definition of TLS problem is given in terms
of the minimization of the function η(x),

η(x) = min
‖Ax− b‖2

1 + xTx
(2)

Indeed, it was shown in [3] that, under well posedness hypotheses, the solution xTLS can
be characterized as the global minimum of η(x), by means of arguments based on the SVD
of the matrix (A|b), and η(xTLS) = σn+1.

In their analysis of Total Least Square problem [2] Golub proved the equivalence defini-
tion for solving the Total Least Square problem in terms of Linear system as

(ATA− η(x)I)x = AT b (3)

Now component wise we can write the above linear system as

cTi x− η(x)eTi x = aTi x

where ai is the ith column of A and cTi = [〈 ai, a1〉, 〈 ai, a2〉, . . . , 〈 ai, an〉]
Now we rewrite the iteration formula as follows

xk+1 = arg min
x

1

2
‖x− xk‖2 s.t cTi x− η(x)eTi x = aTi x (4)

which is strongly convex (the solution is unique). For deriving the solution of the above
problem let us derive the Lagrangian as
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L(x, λ) =
1

2
‖x− xk‖2 + λ

(
cTi x− η(x)eTi x− aTi x

)
Now taking the gradient with respect to x and λ we get

xk+1 − xk + λci − λη(xk)ei = 0

cTi xk+1 − η(xk)eTi xk+1 − aTi xk+1 = 0 (5)

Now solving the equation (5) for λ we have

xk+1 = xk −
cTi xk − η(xk)eTi xk − aTi b
‖ci − η(xk)ei‖2

(ci − η(xk)ei) (6)

Now by letting di = ci − η(xk)ei we van simplify the above update formula as

xk+1 = xk −
dTi xk − aTi b
‖di‖2

di (7)

which is the required update formula for Total Least Square problem. Using the update
formula we get the following iterative algorithm for TLS problem:

Algorithm 1 TLS Algorithm: xk+1 = TLS(A, b, x0, K)

Initialize k ← 0;
while k ≤ K do

Choose i = i(k) from 1, 2, 3, ...,m with equal probability

Update xk+1 = xk −
dT
i(k)

xk−aTi(k)b
‖di(k)‖2

di(k)
k ← k + 1;

end while
return x

Convergence analysis of Algorithm 1 with uniform sampling:

Let us take x∗ to be the optimal solution then we have

‖xk − x∗‖2 = ‖xk − xk+1 + xk+1 − x∗‖2

= ‖xk − xk+1‖2 + ‖xk+1 − x∗‖2 − 2〈xk − xk+1, xk+1 − x∗〉 (8)

Now for this algorithm the last term is 0 because xk−xk+1 and xk+1−x∗ are orthogonal,
this means

〈xk − xk+1, xk+1 − x∗〉
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Using this (8) is simplified as

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2 (9)

The simplest randomized scheme for selecting i is to choose each possible column i with
probability 1/n. With this choice by taking expectation of equation (9) we have

E
[
‖xk+1 − x∗‖2

]
= ‖xk − x∗‖2 − E

[
‖xk+1 − xk‖2

]
= ‖xk − x∗‖2 − E

[
‖d

T
i xk − aTi b
‖di‖2

di‖2
]

= ‖xk − x∗‖2 − E

[(
dTi xk − dTi x∗

)2
‖di‖2

]
(10)

Here we used aTi b = dTi x
∗. Now by using the definition of expectation we have

E
[
‖xk+1 − x∗‖2

]
= ‖xk − x∗‖2 −

n∑
i=1

1

n

(
dTi xk − dTi x∗

)2
‖di‖2

(11)

Now let us define a norm for matrix B

‖B‖2∞,2 = maxi‖fi‖2

with fi denotes the i th row of B. For our case the matrix B = ATA− η(x)I is a n× n
symmetric matrix, so the corresponding rows and columns are same for our case. And also
the i th row/column of B = ATA− η(x)I is given by di. So

‖B‖2∞,2 = ‖ATA− η(x)I‖2∞,2 = maxi‖di‖2

Using the fact ‖ATA− η(x)I‖2∞,2 ≥ ‖di‖2 for all 1 ≤ i ≤ n in equation (11) we have

E
[
‖xk+1 − x∗‖2

]
≤ ‖xk − x∗‖2 −

n∑
i=1

1

n

(
dTi xk − dTi x∗

)2
‖ATA− η(xk)I‖2∞,2

(12)

Now For any vector z ∈ Rn we have

‖
(
ATA− η(xk)I

)
z‖2 =

n∑
i=1

(
dTi z
)2

Using this in equation (12) we have
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E
[
‖xk+1 − x∗‖2

]
≤ ‖xk − x∗‖2 −

‖
(
ATA− η(xk)I

)
(xk − x∗)‖2

n‖ATA− η(xk)I‖2∞,2

=

(
1−

‖
(
ATA− η(xk)I

)
(xk − x∗)‖2

n‖ATA− η(xk)I‖2∞,2‖xk − x∗‖2

)
‖xk − x∗‖2

=

(
1− ‖B(xk − x∗)‖2

n‖B‖2∞,2‖xk − x∗‖2

)
‖xk − x∗‖2 (13)

In the last line we denoted ATA− η(xk)I = B for simplification. Now if we denote

γk = 1− ‖B(xk − x∗)‖2

n‖B‖2∞,2‖xk − x∗‖2

at each iteration, then using successive iteration we have from (13)

E
[
‖xk+1 − x∗‖2

]
≤ γk‖xk − x∗‖2

≤ γkγk−1‖xk−1 − x∗‖2
...

≤ γkγk−1 . . . , γ0‖x0 − x∗‖2

=
k∏

i=1

γi ‖x0 − x∗‖2 = γ‖x0 − x∗‖2 (14)

Now for the algorithm to converge we need 0 6 γ =
∏k

i=1 γi < 1. If we can prove
0 6 γi < 1 for each 1 6 i 6 k, then we are done. Now for any z ∈ Rn we have

‖z‖
‖Bz‖

6 supBx 6=0

‖x‖
‖Bx‖

6
1

σn(B)

Thus for z 6= 0 we have

‖Bz‖
‖z‖

> σn(B)

Now for our case xk−x∗ 6= 0 is trivially true. As if xk−x∗ = 0, Bxk = Bx∗ the xk solves
the problem, we don’t need to proceed to the next iteration. By using above result we have

γk 6 1− σ2
n(B)

n‖B‖2∞,2

For 0 6 γk < 1 we need to prove that

0 < σ2
n(B) 6 n‖B‖2∞,2
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Now the lower bound holds as our assumption σn(B) > 0. Now by using the definition
of Frobenious norm we have

‖B‖F ,

√√√√ m∑
i=1

n∑
j=1

b2ij =
√

Tr(BTB) =

√√√√min{m,n}∑
i=1

σ2
i

As our matrix B is symmetric n× n we have m = n. Then we have

σn(B) 6 σ1(B) 6

√√√√ n∑
i=1

σ2
i =

√√√√ n∑
i=1

n∑
j=1

b2ij

6

√√√√n maxi

n∑
j=1

b2ij

6
√
n maxi‖di‖2 =

√
n‖B‖∞,2 (15)

This implies 0 6 γk < 1 irrespective of k and xk. As a consequence 0 6 γ < 1. Therefore
using (14) we can say this algorithm converges.

3. Conclusion

In this short report we have developed and analyzed the convergence of Randomized
Kaczmarz algorithm for solving the Total Least Square problem. We have calculated the
expected error bound for uniform sampling data. We can also consider non-uniform sampling
and calculate the bound same way.
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